LIZADE UNIVERSITY, ILARA – MOKIN, ONDO STATE, NIGERIA DEPARTMENT: PHYSICAL AND CHEMICAL SCIENCES

COURSE CODE: CHM 205

FIRST SEMESTER EXAMINATIONS: 2020/2021 ACADEMIC SESSION COURSE TITLE: STRUCTURE AND BONDING

HOD's SIGNATURE

TABLE OF CONSTANTS:

Speed of light c, $2.997 \times 10^8 \text{m/s}$ Faraday constant F, 96500C/mol Gas constant R, 8.314JK -1mol -1 Planck's constant h, 6.626 x 10 -34 Js Mass of proton, $1.672 \times 10^{-27} \text{kg}$ Mass of electron, 9.109 x10⁻³¹kg

Elementary charge e, 1.602×10^{-19} C Boltzmann constant k, 1.38 x10⁻²³J/K Gas constant R, 8.314 x 10⁻² L.bar K⁻¹mol⁻¹ Avogadro's constant Na. 6.0228 x10²³mol⁻¹ Mass of neutron, 1.674 x10⁻²⁷kg Atomic mass unit u, 1.661 x10⁻²⁷kg

DURATION: 2HOURS INSTRUCTIONS:

- 1. SECTION A: ATTEMPT TWO QUESTIONS
- 2. SECTION B: ATTEMPT TWO QUESTIONS

SECTION A

- 1.
- a. Explain why the N O bond length decreases for the following species in the order NO₂ > NO₂ > NO₂⁺. Arrange these species in order of increasing bond strength and bond energy. Justify your answer.
- **b.** Discuss the principle and application of X ray diffraction method for determining bond length and bond angles of molecules
- 2.
- c. Draw the structures and state at least two applications of the following compounds
 - i. Hexachlorophosphazene (Cl₂PN)₃
 - ii. Trisodium trimetaphosphate (Na₃P₃O₉)
 - iii. Borazine (H₃N₃B₃)
 - iv. Dichlorine heptoxide (Cl₂O₇)
- **d.** Define the following terms:
 - i. Bond order
 - ii. Bond energy
 - iii. Van der Waal's radius
 - iv. Covalent radius
- State the importance of the van der Waal's radius and the covalent radius?
- 3.
- a. Determine the formal charge on the following molecules
 - i. NH₄+
 - ii. PCls
 - iii. BeCl₂
 - iv. BF₄-

- **b.** Complete and balance these chemical equations. State the conditions for the reactions where necessary
 - i. $B_2O_3 + H_3N \rightarrow$
 - ii. $HClO_4 + P_4O_{10} \rightarrow$
- **c.** Using the valence bond theory and/ or valence shell electron repulsion theory predict the geometry of the following molecules:
 - i. XeF₄
 - ii. PCl₃
 - iii. SF₄

(Atomic numbers of elements: Xe = 54, F = 9, P = 15, S = 16, Cl = 17)

SECTION B

- 4.
- a. State the postulates of Bohr's theory of the hydrogen atom. [4 marks]
- **b.** Derive an expression for the energy of electron in an orbit. [6 marks]
- c. What is the wavelength of the 5th transition in Balmer series of the hydrogen spectrum (R=109737 cm⁻¹). [4 marks]
- **d.** The wavelength of the line in Balmer series that is associated with drop of the electron from an nth orbit is 3.00×10^{-3} cm, calculate the nth value (R=109737 cm⁻¹). [6 marks]
- 5.
- a. Derive the Schrodinger's wave equation. [6 marks]
- **b.** Calculate the wavelength of an α -particle having mass 6.6×10^{-30} g moving with a speed of 10^5 cm sec⁻¹ (h = 6.6×10^{-34} kg m² sec) [5 marks]
- c. What is the de Broglie wavelength of a person with a mass of 50 kg jogging at 5 m/s?[4 marks]
- **d.** Calculate the kinetic energy of an electron emitted from a surface a surface of potassium metal (h= h = 6.6×10^{27} erg sec and wave function = 3.62×10^{-34} erg) by light of wavelength 5.5×10^{-8} cm. (c= 3×10^{10} cm sec⁻¹) [5 marks]
- 6.
- a. Briefly explain these terms:
 - i. Pauli Exclusion Principle [2 marks]
 - ii. Wave-Particle Duality [2 marks]
 - iii. Aufbau Principle [2 marks]
 - iv. The Uncertainty Principle [2 marks]
 - v. Molecular Orbital Theory [2 marks]
- b. Using the VSEPR theory, predict the shapes of the following compounds: SCl₄, H₂O, NH₃, CH₄ and HCHO [2 marks each]